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Abstract—The electromagnetic fields of the higher order axial
resonant modes in a slow wave structure are analyzed and found
to have considerably different characteristics from those of the
conventional fundamental mode. Here, the reflections at both
ends produce axial resonant modes corresponding to axisym-
metric transverse magnetic (TM) modes. The period of field
modulation of some of the higher order axial modes is shorter
than that of the usual mode in a cylindrical waveguide, which
could be of practical interest for higher power, higher frequency
operation of backward wave oscillators. A perturbation technique
is used to ascertain the field distribution inside the resonant
cavity, and the numerical results thus obtained are compared
to some experimental data.

I. INTRODUCTION

YHE growing need for coherent, efficient, and high power
]_ microwaves has led to the development of a number
of innovative devices, including backward wave oscillators
(BWO's), which are a promising class of devices having
a number of useful features, namely: high spectral purity
microwave power, frequency tunability, high efficiency, etc.
[1]-5]. For example, for an overmoded structure, D/A > 1,
7% frequency tunability in the frequency range 5.2-5.6 GHz
has been reported [6]. Here, D is the mean diameter of the
waveguide and ) is the wavelength. Microwave radiations on
the order of 1 GW at a frequency up to 30 GHz have been
obtained [7], [8]. Continuous efforts are being made to enhance
the power and frequency level of the devices.

In the slow wave devices, the interaction of electromagnetic
(EM) quantities takes place inside the slow wave structures
(SWS). In order to understand the physics of the mechanism
involved, it is necessary to analyze the SWS in a realistic
way. Resonators are also used in linear accelerator (linac),
but their geometries are considerably different from those
used in BWO’s. The EM behaviors of the linac cavities
have been extensively studied by many researchers using
numerical computational techniques. In order to study the
accelerator cavities with complex geometries, computational
codes such as SUPERFISH [9], URMEL-T [10], etc., have
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been developed. These codes are based on the discretization
techniques of Maxwell’s and Helmholtz’s equation, in general.
The computational time of these codes depends on the number
of mesh points, geometry of the cavity, boundary conditions,
and accuracy demanded for the particular purpose. A brief
description of the numerical codes generally used in linac
studies is presented in [11] by Cooper and Jones. In this work,
an attempt has been made to explore the EM quantities of
a sinusoidally corrugated SWS typically used in the BWO
experiments in the simplest way, by using analytic equations
derived for this purpose. In the BWO’s, the finite axial
dimension of the SWS causes reflections from the ends and,
thereby, quantization of the axial wavenumber results in axial
resonant modes. The finite transverse dimension of the SWS
limits the power handling capability due to the internal RF
breakdown. In order to overcome such a problem, one can
increase the mean diameter of the SWS, thus creating an
overmoded system. In general, many higher modes can be
oscillated in such an overmoded SWS. It is still possible to
operate the BWO preferentially at a particular mode with
higher frequency by carefully selecting the beam and size
parameters. This is because the respective modes have dif-
ferent starting current for oscillation with each other. This
difference can be carefully used to select the particular mode
for oscillation. In fact, recent experiments have shown that
efficient and high power output can be achieved in such
devices operating in a single mode [6]. Despite the numerous
studies on conventional, weakly relativistic microwave tubes.
more detailed studies of the resonant modes in the finite length
SWS’s intended for operation with highly relativistic electron
beams are required. The motivation of the present work is
the recent interest in the generation of high power microwave
radiation employing overmoded slow wave systems. Most of
the analyses of such systems were performed assuming infinite
length systems or perfectly matched finite length systems,
which are far from the actual experiments. Moreover, their
analyses have been restricted mainly to the fundamental mode
[12]-[18]. In this paper, we model a finite length SWS
consistent with real experiments and include higher order
modes in our computations. Specifically. we consider the
two wave interaction process with 100% round-trip reflection.
Under this assumption. our SWS becomes an SWS cavity with
perfectly shorted ends. Detailed field calculations along with
higher harmonic analysis of the axial resonant modes in the
SWS have been made. For the higher order axisymmetric TM
modes (T'Mps,s > 1), some unusual and novel phenomena
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Fig. 1. Schematic diagram of a spatially periodic slow wave structure (SWS)
showing the directions of forwardly propagating wave F and backwardly
propagating wave B. (a) SWS shorted at z = 0 and z = L and (b) locations
of the F' and B waves in the dispersion curve in the first Brillouin zone.

have been found for the first time regarding the amplitude
of the spatial harmonic components of the resonant modes for
particular values of the axial wavenumber. Cavity perturbation
technique [19] has been employed to calculate the resonant
frequency shift of the cavity. Some of the present numerical
results are compared to experimental and numerical results
obtained by using SUPERFISH in [20], and are found to be
in excellent agreement.

The organization of the paper is as follows. In Section II,
we present the mathematical formulation of the SWS. Section
III describes the numerical results of the analysis. The cavity
perturbation technique and the corresponding numerical and
experimental results are given in Section IV. In Section V,
discussion and conclusion of the present works are presented.

II. MATHEMATICAL FORMULATION

First, we consider an infinite length SWS; next, after im-

posing additional axial boundary condition to the system, we
will obtain the EM field quantities in a finite length SWS. As
depicted in Fig. 1(a), the SWS is assumed to be sinusoidally
corrugated in the axial direction with radius R(z) = Ry +
hcos koz, where ko = 2m/zy. Physical quantities associated
with an EM mode are represented by a spatial harmonic series
satisfying Floquet’s theorem. For axisymmetric TM modes,
the axial electric field £, can be expressed as [14], [16]

Z A JO(—T) i(kpz2—wt) (1)
Ry )

n=-—oo

E.(z,71) =

where Jy is the Oth-order Bessel’s function of the first kind,
22 = R3(w?/c? —k2), kn, = k+nko, k is the axial wavenum-
ber, and n is an integer. For slow spatial harmonic waves
with 22 < 0, Bessel’s function Jy becomes the modified
Bessel’s function Ip. Although the contributions of these
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Fig. 2. Numerically obtained dispersion relations of the SWS$S
for—m < kzo < # in the first Brillouin zome. The parameters of the
SWS are: Ry = 1.4499 cm, zp = 1.67 cm, and h = 0.406 cm. Light lines
(w/k = c) are shown by dashed lines,
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Fig. 3. Electric field patterns of the T'Mo1 mode. SWS parameters are:
Ry = 1499 cm, z9p = 1.67 cm, and h = 0.406 cm. Arrows indicate
the direction of the electric field. The density of the field lines indicates
the strength of electric field qualitatively. (a) TMg1 (0% /6) mode and (b)
TMp1(67/6) mode.

harmonics are -substantial inside the deep corrugation (r ~
Ry + h), this region is so small that we can still determine
the EM characteristics inside the SWS correctly. The other
components, I7,. and Hy, are derived from E,. The dispersion
relation is obtained from the boundary condition at the wall
of the structure, i.e., the tangential component of electric field
should be zero at » = R(z). The mth spatial Floquet harmonic
components of this boundary condition can be expressed as

S o2 k 9
i[(n—m)kz] W O
2 A // (“" @2/ —k2) az)
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Fig. 4. Electric field patterns of the T'Afy4 mode. SWS parameters are the
same as in Fig. 3. Arrows indicate the direction of electric field. The density
of the field lines indicates the strength of the electric field qualitatively. (a)
T Moa(07/6) mode and (b} TAMo4(67/6) mode.

In order to evaluate this integral, we used Taylor series
expansion of the Bessel’s function around R = Ry, since
direct integration takes much time for computation. The radial
boundary condition is imposed into the following matrix form:

[D]-[A] =0 )

where [A] is a column vector with elements A,, and [D]
is a matrix of an infinite rank with each element given by
Do = [1+ (n — m)Q,]Cnn where
0 (xna)zq—Hn—m]Jé2q+ln—ml)(xn)
Conn = Z 2q+|n—

¢ 2%tIn=migl (g + |n — m])!

q=

3

Qn = kokn/(w?/c® — k%) and a = h/Ry. The dispersion
relation is determined from the condition that (2) should have
nontrivial solutions, and is given by

D(k, w) = det[D] = 0. 4

In our practical calculation, the value of n is limited to —4
< n £ 4 and 2¢ + |n — m}| < 10 is chosen in (3). By
comparing to direct integration, we have confirmed that the
Taylor expansion of the Bessel’s function converges quite
rapidly and that the numerical errors are less than 1% for
the fundamental mode with the parameters later described.

In the case of a finite length SWS, the additional boundary
condition at both ends of the structure must be included.
Referring to Fig. 1(a), a forward propagating wave F' in the
z-direction is reflected at z = L and becomes a backwardly
propagating wave B. The locations of the waves on the
dispersion curve are shown in Fig. 1(b). Both F' and B waves
have to satisfy (4). The F' wave propagates from the z = 0
boundary. After a round-trip with reflection at z = L, the
resultant wave at the z = 0 boundary should be “single”
valued. This is a two wave interaction process, and the axial
boundary condition can be expressed as [16]
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Fig. 5. Relative magnitude of the amplitude of the Floquet harmonics A,
versus normalized wavenumber for 0 < kzgp < 7. (a) T'My; mode and (b)
T Alg4 mode.

where R is the total reflection coefficient at the ends of
the SWS, and kr and kp are the wavenumbers of the F'
and B waves, respectively. If the cavity is lossless and the
ends are shorted with perfectly conducting metal plates, then
R =1 and kr = —kp as shown in Fig. 1(b). Hence, from
(5), kg = Nw/L, where N is an integer. Except for the
propagating direction, the wave B is the same as the wave
F. They satisfy identical radial boundary conditions and have
the same energy. Therefore, in (1), the relationship between
the coefficients A,, can be written as AY = AZ . By summing
the F' and B waves, the expressions of the EM fields in the
SWS cavity become

E.(z,r t)=e Y 2Anjo(%’ir> cos (knz)  (6)
]

n=—oo
i L 24,k T )
E, (z,7,1) = Rge ™" _Z_oo xr; 2 <—"(;7~) sin (k,2)
@)
Hy(z,r, t) = —1eqwRge ™t
Z 24, J1 (ﬁr> cos (kp2). (8)
Tn RO

n=—oo

Once the dispersion relation (4) is solved numerically, the
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Fig. 6. Axial profiles of Floquet harmonics of field E; at radial position r = 0 for T'Mg; and T My4 modes. The higher order harmonics of small amplitudes
are not shown in the figures. Thick, solid curves represent the total value of the electric field £.. Thin, dashed and chained curves represent the Floquet
harmonics as indicated by n in the figures. (a) TMo1(07/6) mode, (b) T'Mo (67/6) mode, (¢) TMopa(07/6) mode, and (d) T Moa(67/6) mode.

relative magnitudes between the A, factors are determined
from (2). With a known set of values of A,,, the normalized
values of the fields F,, F,.. and Hy can be calculated from
(6), (7), and (8), respectively.

III. NUMERICAL RESULTS

In the present analysis, a six-period SWS having the
following size parameters is considered: the mean ra-
dius By = 1.499 cm; the period of corrugation zg =
1.67 cm; and the corrugation amplitude A = 0.406 cm.
These dimensions correspond to the experimental values
used by our research group at the University of Mary-
land [20]. Fig. 2 depicts dispersion relations computed
from (4). The dashed lines in the figure are the light
lines in free space. The end reflections cause the six-
period SWS to resonate at seven distinct frequencies
corresponding to the particular TM modes. For the first
Brillouin zone (-7 < kz < «) of the dispersion
relation, the values of the normalized wavenumber kzq
which correspond to the seven resonant axial modes are
0m/6,7/6,27 /6,37 /6,47 /6,57 /6, and 6m/6, respectively.
We will designate these axial modes by T Mg,(N7/6)
hereafter.

A. Electric Field Lines of the Fundamental Mode

Using the derived field equations in the SWS, the electric
field lines are calculated. The method of computation is identi-
cal to that developed by Ogura et al. [18], with a modification
for the higher order modes. Examples of the electric field
patterns of the T'My; mode are depicted in Fig. 3(a) and (b),
respectively, for T Mo (07 /6) and T My, (67/6) modes. The
separations Ar between the field lines in the radial direction
are so chosen that F, Ar =constant at the axial position
E,. = 0. The density of the field lines in the radial direction
represents the strength of the electric field qualitatively. For
the 7'My, (0x/6) mode in Fig. 3(a), the electric field is fairly
uniform in the axial direction, and the radial variation of the
field has a maximum on the axis of the structure. The axial
pattern of the fields has six zero points (£, = 0) for the
T M1 (67 /6) modes as shown in Fig. 3(b). The periodic nature
of the field lines depicted in Fig. 3(b) can be explained by
the contribution of the Floquet harmonics for n = 0 to the
resonant axial modes.

B. Field Patterns of Higher-Order Modes

The numerical calculation of the field patterns for the higher
order modes [T'My,(s > 1)] is complicated. We followed
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an improved technique from the case of the fundamental
mode [18], and have tried to calculate the electric field
lines for the T Mys, T'Myz, and T My, modes. Some of the
results for the 7'My, mode are presented in Fig. 4(a) and (b),
respectively, for the case of T'My,(0n/6) and T My, (67/6)
modes. The field patterns have fine and peculiar structures and
differ considerably from those of the T'My; mode in Fig. 3.
The radial distribution of the electric field lines in Fig. 4 is
localized and separated into two parts: the peripheral and
the central axis regions. The possible explanations for this
difference can be given by the contribution of the Floquet
harmonics involved in the SWS. This will be discussed in
detail in the following subsection.

C. Floquet Harmonics of the Electromagnetic
Fields in the Structure

The number of Floquet harmonics to represent the EM fields
are practically limited by the computation time and the relative
magnitude of the amplitude factor A,’s. The values of A,
differ from mode to mode as shown in Fig. 5(a) and (b),
respectively, for TMy; and T'Myy, modes. In general, A,
decreases with increasing |n|, namely, A, within the first
Brillouin zone of the dispersion relation is the largest. In
Fig. 5(a), at kzy = 0, the relation between A,’s becomes
|An| = |A_n| and |A,| & |A_n_i| at k2o = 7. At r =
0, the nonzero field component is F,, and it is proportional
to Ao+ A_1exp[—i(2m/z0)z] + Ar exp [i(27/20)2] +- - - . As
shown in Fig. 5(a), the contribution of the n = 0 Floquet
harmonic to E, is predominant, and the amplitudes of the
higher order harmonics are very small except at kzp & 7 for
the 7'My, (6m/6) mode. For this reason, the field lines of the
T My1(0r/6) mode, as shown in Fig. 3(a), are almost straight
lines for r < Rp. On the other hand, the field lines of the
T Mo (67 /6) mode are determined by then =0 andn = — 1
Floquet harmonics. These two harmonics have the same field
variations in the z-direction with a period of 2z, and, hence,
we obtain the field pattern with the periodicity depicted in
Fig. 3(b).

For the T'My, mode in Fig. 5(b), the values of A1 become
greater than Aq for small values of k within the first Brillouin
zone of the dispersion curve. This result is novel and was
not known in the previous works [14]-[16], [18]. The effects
of this unusual behavior are observed in the electric field
patterns of the structure shown in Fig. 4. In Fig. 5(b), as &
increases, |A,,| approaches |A_,,1| at kzg = 7, as is observed
for the T Mpy; mode in Fig. 5(a). The field quantities of the
TMys(0n/6) mode in Fig. 5(b) are nearly proportional to
A_qexp[—i(27/z0)z]+ A1 exp [i(27/ 20) 2], which is periodic
with period zg. This fact can be seen from the field patterns
of the TMy,(0r/6) mode as shown in Fig. 4(a). As kz
approaches m, the field patterns of the 7'My, (67 /6) mode near
r = 0 as shown in Fig. 4(b), have a periodicity 2z¢, which is
similar to that for the 7'My (67/6) mode in Fig. 3(b).

The harmonic components of E,(r = 0, z) are shown in
Fig. 6(a) and (b) for the T'My; mode and in Fig. 6(c) and (d)
for the TMys mode. The EM fields are normalized by Aj.
The thick, solid curves in the figures represent the total value
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Fig. 7. Resonance frequency shift Af of the axial resonant modes for the
TAMos mode due to perturbation by a spherical metallic bead. (a) Axial
changes in A f of the T]L[o4(07r/6) mode for the bead at r = 0 (b) radial
changes in Af of the TMp4(67/6) mode for the bead at 2 = Nzo: (c)
axial changes in Af of the T'Mo4(67/6) mode for the bead at r = 0. Here,
N =1,2,-- .6

of E.. The thin, dashed and chained curves in Fig. 6 express
E, components at r = 0 denoted by the harmonic number n
in (1), which can be understood if one compares to the values
of A, at kzg = 0 and kzo = = in Fig. 5(a) and (b). The
amplitudes of the higher order harmonics not expressed are
very small compared to those shown in Fig. 6. The z-direction
periodicities of F,—as depicted in Fig. 6(a)-(d)—correspond,
respectively, to those of Figs. 3(a) and (b), and 4(a) and (b).
In Fig. 6(a), the contribution of the n = £ 1 harmonics to E,
results in a small superimposed perturbation in the z-direction.
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Fig. 8. Comparison of numerical and experimental results of frequency shift Af by the displaced bead in axial and radial directions. The solid curves
indicate the numerical results, and the open circles represent the corresponding experimental results. The axial data were measured by the bead at a radial
position r = 0.543 cm. (a) Axial changes in Af for the T'My1(67/6) mode; (b) radial changes in Af for the T'AMp1(67/6) mode; (¢) axial changes
in Af for the TAlp3(37/6) mode; (d) radial changes in Af for the TMoy3(37/6) mode.

The effect of this perturbation can easily be observed in the
field lines for the T'Mo; (0w /6) mode in Fig. 3(a).

The above results for the 1" My4 mode are never trivial and
have not been clarified in the past in the literature [14]-[18].
In usual cases, the fundamental Ay term is dominant in (1) as
shown in Fig. 6(b) and (d); the shortest axial period of FE, is
220 for kzg = w, as was shown by Fig. 3(b) and Fig. 4(b).
On the other hand, in the special case where |Ay]| is larger
than Ag, as shown in Fig. 5(b), the axial period can become
as small as zy for kzg ~ 0, which is much shorter than the
usual minimum period of 2z.

IV. PERTURBATION TECHNIQUE

The perturbation technique is a powerful method to measure
EM field variations inside the resonant cavity [19]. This
technique has been employed in the following analysis of
SWS cavity, and the numerical results have been compared
to experimental ones obtained at the University of Maryland
{20].

When there exists a small metallic sphere bead with radius
ro in the cavity, the EM fields in the cavity are perturbed and
the resonance frequency of the cavity changes by an amount of
A f. If the perturbation is small enough, A f can be calculated
approximately with the unperturbed field quantities F,, F,.,

and Hjy given by (6)—(8). The resultant expression for Af
becomes [19], [20]

Af _ zmrg(GuolHel® — 3eo(|Ba|* + | En[?))
foo JupolHel? + eo(|E-? + |E,[?) dV) -

From (9), the field quantities are closely related to the fre-
quency shift of the SWS cavity due to the bead. In the case of
a spherical bead, the EM field quantities cannot be determined
separately, because an unidirectional perturbation is impossible
to achieve with the spherical bead perturber. The perturbation
in F is always accompanied by a perturbation in H.

The calculated values of the frequency shift Af for the
T My mode, with a bead radius of 0.1195 cm, are presented
in Fig. 7. The axial changes in Af in Fig. 7 are calculated
with the perturber at » = 0. The axial changes in Af for
the T Mo4(07/6) mode are shown in Fig. 7(a). The radial and
axial changes in Af for the T'My4(67/6) mode are shown
in Fig. 7(b) and (c). respectively. At r = 0, E, = Hy =
0 and the only nonzero field component in (9) is E., and,
hence, Af in the axial direction as shown in Fig. 7(a) and
(c), respectively, for T'Mo,(0n/6) and T Mos(67/6) modes
are directly proportional to ~|E.|2. In other words, the results
presented in Fig. 7(a) and (c) are proportional to the square
of the axial profiles of total £, in Fig. 6(c) and (d). Hence,
at r = 0, we can obtain the quantitative information about

)
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the axial electric field in the SWS from the Af data. It
should be noted that the solid curve in Fig. 6(c) is not
symmetric regarding £, (r = 0)= 0. The curve in Fig. 7(a) is
therefore not simply sinusoidal. For r # 0, however, using the
spherical perturber, it is impossible to measure quantitatively
the individual fields involved in A f. The radial variations of
Af are dependent on E., E,., and Hg. In the case of r #
0, at the axial positions where F, = 0, both contributions
from E, and Hg to Af cannot be ignored as is seen from
(9). The positive region in the radial profile of Af for the
T Mo4(67/6) mode, in Fig. 7(b), is ascribed to Hy. The axial
variations of Af for the T My, (0n/6) mode, in Fig. 7(a), are
very rapid compared to those for the 7'My, (67/6) mode, as
shown in Fig. 8(a) by the solid curve. Experimentally, it is
difficult to measure axial changes in Af for the T'My4(07/6)
mode, in Fig. 7(a), because of the very rapid variation of the
fields in the axial direction. However, the 7'My (67/6) mode
in Fig. 7(c) has variations of Af similar to those observed
for the T'Mp1(67/6) mode in Fig. 8(a). These modes have
field variations which are not very rapid in the axial direction
as depicted in Fig. 6(b) and (d). The numerical results of
A f have been compared to experimental measurements [20],
and some of these results are shown in Fig. 8. The axial and
radial changes in A f for the T My; (67/6) mode are shown in
Fig. 8(a) and (b), respectively. The axial and radial changes in
Af for the T My3(37/6) mode are shown in Fig. 8(c) and (d),
respectively. The open circles represent the experimental data,
and the solid curves are the present numerical results. The
numerical data presented in Fig. 8(a) and 8(c) are for the bead
at a radial position r = 0.543 cm from the axis. By comparing
the frequency shift to the field profiles, one can determine
the axial resonant modes in the SWS to be T'My; (67/6) and
T My3(3w/6) modes. The agreement between the numerical
and experimental results can be clearly estimated from the
figures. The discrepancy between them lies within the range
of 10-20%.

V. DISCUSSION AND CONCLUSION

We have numerically analyzed the EM quantities of fun-
damental and higher order axial TM modes in a finite length
SWS. It is found that, for the higher order modes, the am-
plitudes of the Floquet harmonics show unusual behavior as
depicted in Fig. 5(b) for the T'My4 mode. For the T My (07 /6)
mode (kzg = 0), the field quantities are mainly determined by
the Floquet harmonics with n = —1 and 1, and the fields
have an unusual short period of zp as shown in Figs. 4(a)
and 6(c). This indicates that the period of field modulations
can decrease to zg, which is small compared to that for the
usual modes in cylindrical waveguides where the period is
larger than 2zg. Such a mode with short field modulations may
become important for higher frequency operation of BWO’s.

The numerical results presented in this paper are being
verified experimentally at the University of Maryland [20].
Generally speaking, it is impossible to reconstruct the field
distributions including phase change by the frequency shift
measurements only, because the frequency shift is related to
only the absolute values of the EM fields, as is seen from

(9). In some cases, however, the experimental results can be
compared to the numerical calculations as shown in Fig. 8. It is
concluded that the measured resonant modes are 7'M, (67/6)
in Fig. 8(a) and (b), and T My3(3w/6) in Fig. 8(c) and (d).
The agreement between the numerical and experimental data
is quite satisfactory.

To determine the dispersion characteristics of an SWS
cavity, shorted plates are placed at both ends and the resonant
modes are excited by a suitable mode launcher at one of the
end plates. The degree of coupling between the mode launcher
and the SWS determines the type of mode launcher to be
used in the experiment. If the coupling between the mode
launcher and the cavity is strong, complete reflection on the
input antenna side cannot be expected. For a disc-type mode
launcher, the reflection coefficient at the input end will be
small, and consequently our assumption of perfectly shorted
ends of the SWS becomes inapplicable. Hence, we prefer a
short wire antenna at the center of the plate as a mode launcher
to excite the cavity. However, it is difficult to excite the surface
wave modes near kzg = 7, as was reported in [20].
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