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Abstract-The electromagnetic fields of the higher order axial

resonant modes in a slow wave structure are analyzed and found

to have considerably different characteristics from those of the
conventional fundamental mode. Here, the reflections at both
ends produce axial resonant modes corresponding to axisym-
metric transverse magnetic (TM) modes. The period of field
modulation of some of the higher order axial modes is shorter

than that of the usual mode in a cylindrical waveguide, which

could be of practical interest for higher power, higher frequency

operation of backward wave oscillators. A perturbation technique
is used to ascertain the field distribution inside the resonant

cavity, and the numerical results thus obtained are compared

to some experimental data.

I. INTRODUCTION

7.

1 HE growing need for coherent, efficient, and high power

microwaves has led to the development of a number

of innovative devices, including backward wave oscillators

(BWO’S), which are a promising class of devices having

a number of useful features, namely: high spectral purity

microwave power, frequency tunability, high efficiency, etc.

[1]-[5]. For example, for an overmoded structure, D/A >1,

7% frequency tunability in the frequency range 5.2-5.6 GHz

has been reported [6]. Here, D is the mean diameter of the
Waveguide and A is the wavelength. Microwave radiations on

the order of 1 GW at a frequency up to 30 GHz have been

obtained [7], [8]. Continuous efforts are being made to enhance

the power and frequency level of the devices.

In the slow wave devices, the interaction of electromagnetic

(EM) quantities takes place inside the slow wave structures

(SWS). In order to understand the physics of the mechanism

involved, it is necessary to analyze the SWS in a realistic

way. Resonators are also used in linear accelerator (linac),

but their geometries are considerably different from those

used in B WO’s. The EM behaviors of the linac cavities

have been extensively studied by many researchers using

numerical computational techniques. In order to study the

accelerator cavities with complex geometries, computational

codes such as SUPERFISH [9], URMEL-T [10], etc., have
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been developed. These codes are based on the discretization

techniques of Maxwell’s and Helmholtz’s equation, in general.

The computational time of these codes depends on the number

of mesh points, geometry of the cavity, boundary conditions,

and accuracy demanded for the particular purpose. A brief

description of the numerical codes generally used in Iinac

studies is presented in [11] by Cooper and Jones. In this work,

an attempt has been made to explore the EM quantities of

a sinusoidally corrugated SWS typically used in the BWO

experiments in the simplest way, by using analytic equations

derived for this purpose. In the BWO’s, the finite axial

dimension of the SWS causes reflections from the ends and,

thereby, quantization of the axial wavenumber results in axial

resonant modes. The finite transverse dimension of the SWS

limits the power handling capability due to the internal RF

breakdown. In order to overcome such a problem, one can

increase the mean diameter of the SWS, thus creating an

overmoded system. In general, many higher modes can be

oscillated in such an overmoded SWS. It is still possible to

operate the BWO preferentially at a particular mode with

higher frequency by carefully selecting the beam and size

parameters. This is because the respective modes have dif-

ferent starting current for oscillation with each other. This

difference can be carefully used to select the particular mode

for oscillation. In fact, recent experiments have shown that

efficient and high power output can be achieved in such

devices operating in a single mode [6]. Despite the numerous

studies on conventional, weakly relativistic microwave tubes.

more detailed studies of the resonant modes in the finite length

SWS’s intended for operation with highly relativistic electron

beams are required. The motivation of the present work is

the recent interest in the generation of high power microwave

radiation employing overmoded slow wave systems. Most of

the analyses of such systems were performed assuming infinite

length systems or perfectly matched finite length systems,

which are far from the actual experiments. Moreover, their

analyses have been restricted mainly to the fundamental mode

[12]-[18]. In this paper, we model a finite length SWS

consistent with real experiments and include higher order

modes in our computations. Specifically. we consider the

two wave interaction process with 100% round-trip reflection.

Under this assumption. our SWS becomes an SWS cavity with

perfectly shorted ends. Detailed field calculations along with

higher harmonic analysis of the axial resonant modes in the

SWS have been made. For the higher order axisymmetric TM

modes (TA405, s > 1), some unusual and novel phenomena
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Fig. 1. Schematic diagraofa spatially periodic slowwave s@ucture(SWS)

showing the directions of forwardly propagating wave F and backwardly
propagating wave l?. (a)SWS shorted atz=O andz = L and(b) locations

of the F and 13 waves in the dkpersion curve in the first Brillouin zone.

have been found for the first time regarding the amplitude

of the spatial harmonic components of the resonant modes for

particular values of the axial wavenumber. Cavity perturbation

technique [19] has been employed to calculate the resonant

frequency shift of the cavity. Some of the present numerical

results are compared to experimental and numerical results

obtained by using SUPERFISH in [20], and are found to be

in excellent agreement.

The organization of the paper is as follows. In Section II,

we present the mathematical formulation of the SWS. Section

III describes the numerical results of the analysis. The cavity

perturbation technique and the corresponding numerical and

experimental results are given in Section IV. In Section V,

discussion and conclusion of the present works are presented.
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Fig. 2. Numerically obtained dispersion relations of the SW7S
for– r < k,ro < m in the first Brillouin zone. The parameters of the

SWS are: R. = 1.4499 cm, zo = 1.67 cm, and h = 0.406 cm. Light lines
(ti/k = c) are shown by dashed lines.
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Fig. 3. Electric field patterns of the T’Afo 1 mode. SWS parameters are:

II. MATHEMATICAL FORMULATION
RO = 1.499 cm, zo = 1.67 cm, and h = 0.406 cm. Arrows indicate
the direction of the electric field. The density of the field lines imhcates
the strength of electric field qualitatively. (a) Z’llfol (07r/6) mode and (b)

First, we consider an infinite length SWS; next, after im- ~Mol (6.,6) mode

posing additional axial boundary condition to the system, we

will obtain the EM field quantities in a finite length SWS. As

depicted in Fig. l(a), the SWS is assumed to be sinusoidally

corrugated in the axial direction with radius R(z) = R. +

h cos koz, where k. = 27r/.zo. Physical quantities associated

with an EM mode are represented by a spatial harmonic series

satisfying Floquet’s theorem. For axisymmetric TM modes,

the axial electric field EZ can be expressed as [14], [16]

where Jo is the Oth-order Bessel’s function of the first kind,

$2 = R? (CJ2/C2 – k:), kn = k + d-c., k is the axial wavenum-

b~r, and n is an integer. For slow spatial harmonic waves

with z: < 0, Bessel’s function Jo becomes the modified
Bessel’s function 10. Although the contributions of these

harmonics are substantial inside the deep corrugation (r ~

R. + h), this region is so small that we can still determine

the EM characteristics inside the SWS correctly. The other

components, ET and 118, are derived from E=. The dispersion

relation is obtained from the boundary condition at the wall

of the structure, i.e., tlhe tangential component of electric field

should be zero at r = R(z). The mth spatial Floquet harmonic

components of this boundary condition can be expressed as

().Jo ~R dz = O.
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Fig. 4. Electric field patterns of the TIU04 mode. SWS parameters are the

same as in Fig. 3. Arrows indicate the direction of electric field. The density

of the field lines indicates the strength of the electric field qualitatively. (a)
TAlo4(Orr/6) mode and (b) TJfo4(6rr/6) mode.

In order to evaluate this integral, we used Taylor series

expansion of the Bessel’s function around R = R., since

direct integration takes much time for computation. The radial

bound~ condition is imposed into the following matrix form:

[D] . [A]= O (2)

where [A] is a column vector with elements An, and [D]

is a matrix of an infinite rank with each element given by

D W,. = [1 + (n – m) Qn]Cmn where

Q. = ~ok/(w2/c2 – &,) md a = h/Ro. The dispersion
relation is determined from the condition that (2) should have

nontrivial solutions, and is given by

D(k, W) = det [D] = O. (4)

In our practical calculation, the value of n is limited to –4

s n s 4, and 2q + In – ml ~ 10 is chosen in (3). By

comparing to direct integration, we have confirmed that the

Taylor expansion of the Bessel’s function converges quite

rapidly and that the numerical errors are less than 170 for

the fundamental mode with the parameters later described.

In the case of a finite length SWS, the additional boundary

condition at both ends of the structure must be included,

Referring to Fig. 1(a), a forward propagating wave F in the

z-direction is reflected at ,z = L and becomes a backwardly

propagating wave l?. The locations of the waves on the

dispersion curve are shown in Fig. l(b). Both F and B waves

have to satisfy (4). The F wave propagates from the z = O

boundary. After a round-trip with reflection at z = L, the

resultant wave at the z = O boundary should be “single”

valued. This is a two wave interaction process, and the axial

boundary condition can be expressed as [16]

Rei(kF–~B)~ = 1 (5)
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Fig. 5. Relative magnitude of the amplitnde of the Floquet harmonics .1,,
versus normalized wavenumber for O < L-ZO < T. (a) TilfLI 1 mode and (b)
T’M04 mode.

where R is the total reflection coefficient at the ends of

the SWS, and k~ and k~ are the wavenumbers of the F

and 1? waves, respectively. If the cavity is lossless and the

ends are shorted with perfectly conducting metal plates, then

R = 1 and k~ = –k~ as shown in Fig. l(b). Hence, from

(5), k~ = NT/L, where N is an integer. Except for the

propagating direction, the wave B is the same as the wave

F. They satisfy identical radial boundary conditions and have

the same energy. Therefore, in (1), the relationship between

the coefficients A. can be written as A: = A~m. By summing

the F and B waves, the expressions of the EM fields in the

SWS cavity become

E.(Z, 7-, t) = e-zwt F ()2A.~o ~r COS(k.z) (6)

n.—m

(7)

Ho(z, r, t) = –wowRoe-iWt

Once the dispersion relation (4) is solved numerically, the
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Fig. 6. Axial profiles of Floquet harmonics of field,!?. at radial position r = O for TMOI and TM04 modes. The higher order harmomcs of small amplitudes

we not shown in the figures. Thick, solid curves represent the total value of the electric field E,. Thin, dashed and chained curves represent the Floquet

harmonics as indicated by n in the figures. (a) TAIoI (07r/6) mode, (b) TMOI (6T/6) mode, (c) TAI04(07r/6) mode, and (d) TAf04 (6rr/6) mode.

relative magnitudes between the An factors are determined

from (2). With a known set of values of An, the normalized

values of the fields EZ, E., and 170 can be calculated from

(6), (7), and (8), respectively.

III. NUMERICAL RESULTS

In the present analysis, a six-period SWS having the

following size parameters is considered: the mean ra-

dius R. = 1.499 cm; the period of corrugation ,zO =

1.67 cm; and the corrugation amplitude h = 0.406 cm.
These dimensions correspond to the experimental values

used by our research group at the University of Mary-

land [20]. Fig. 2 depicts dispersion relations computed

from (4). The dashed lines in the figure are the light

lines in free space. The end reflections cause the six-

period SWS to resonate at seven distinct frequencies

corresponding to the particular TM modes. For the first

Brillouin zone (–~ < k.zo < m) of the dispersion
relation, the values of the normalized wavenumber k,zo

which correspond to the seven resonant axial modes are

On/6, 7r/6, 2x/6, 3r/6, 4T/6, 5r/6, and 67r/6, respectively.

We will designate these axial modes by 7’Lfo~ (lV7r/6)

hereafter.

A. Electric Field Lines of the Fundamental Mode

Using the derived field equations in the SWS, the electric

field lines are calculated. The method of computation is identi-

cal to that developed by Ogura et al. [18], with a modification

for the higher order modes. Examples of the electric field

patterns of the TA401 mode are depicted in Fig. 3(a) and (b),

respectively, for 7’A401 (07r/6) and TA401 (67r/6) modes. The

separations Ar between the field lines in the radial direction

are so chosen that EZ Ar =constant at the axial position

E. = O. The density of the field lines in the radial direction

represents the strength of the electric field qualitatively. For
the TAIO1 (07r/6) mode in Fig. 3(a), the electric field is fairly

uniform in the axial direction, and the radial variation of the

field has a maximum on the axis of the structure. The axial

pattern of the fields has six zero points (EZ = O) for the

TA401 (67r/6) modes as shown in Fig. 3(b). The periodic nature

of the field lines depicted in Fig. 3(b) can be explained by

the contribution of the Floquet harmonics for n = O to the

resonant axial modes.

B. Field Patterns of Higher-Order Modes

The numerical calculation of the field patterns for the higher

order modes [TAJo~ (s > I)] is complicated. We followed
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an improved technique from the case of the fundamental

mode [18], and have tried to calculate the electric field

lines for the TM02, TM03, and TM04 modes. Some of the

results for the TM04 mode are presented in Fig. 4(a) and (b),

respectively, for the case of TM04 (07r/6) and TMo4(67r/6)

modes. The field patterns have fine and peculiar structures and

differ considerably from those of the TMOI mode in Fig. 3.

The radial distribution of the electric field lines in Fig. 4 is

localized and separated into two parts: the peripheral and

the central axis regions. The possible explanations for this

difference can be given by the contribution of the Floquet

harmonics involved in the SWS. This will be discussed in

detail in the following subsection.

C. Floquet Harmonics of the Electromagnetic

Fields in the Structure

The number of Floquet harmonics to represent the EM fields

are practically limited by the computation time and the relative

magnitude of the amplitude factor An’s. The values of An

differ from mode to mode as shown in Fig. 5(a) and (b),

respectively, for TMO1 and TM04 modes. In general, An

decreases with increasing In 1, namely, A. within the first

Brillouin zone of the dispersion relation is the largest. In

Fig. 5(a), at kzo = O, the relation between An’s becomes

lAnl = lA-nl and lAnl % lA-n-ll at kzo = n. At r =

O, the nonzero field component is Ez, and it is proportional

to A. +A-l exp {–z(27r/zo)z] +A1 exp [Z(27r/Zo)z] +. . . . As

shown in Fig, 5(a), the contribution of the n = O Floquet

harmonic to E, is predominant, and the amplitudes of the

higher order harmonics are very small except at kzo x m for

the 7’Afol (67r/6) mode. For this reason, the field lines of the

T&fol (07r/6) mode, as shown in Fig. 3(a), are almost straight

lines for r S R.. On the other hand, the field lines of the

TMOI (6m/6) mode are determined by the n, = O and n = – 1

Floquet harmonics. These two harmonics have the same field

variations in the z-direction with a period of 2Z0 and, hence,

we obtain the field pattern with the periodicity depicted in

Fig. 3(b).

For the TM04 mode in Fig. 5(b), the values of A~l become

greater than A. for small values of k within the first Brillouin

zone of the dispersion curve. This result is novel and was

not known in the previous works [ 14]–[ 16], [18]. The effects

of this unusual behavior are observed in the electric field

patterns of the structure shown in Fig. 4. In Fig. 5(b), as k

increases, IAn \ approaches IA–n–l I at kzo = n, as is observed

for the TMO1 mode in Fig. 5(a). The field quantities of the

TM04 (07r/6) mode in Fig. 5(b) are nearly proportional to

A–l exp [–z(27r/zo)z] + Al exp [Z(27r/Zo)z], which is periodic

with period ,zO.This fact can be seen from the field patterns

of the TM04 (07r/6) mode as shown in Fig. 4(a). As kzo

approaches n, the field patterns of the TM04 (67r/6) mode near
r = O as shown in Fig. 4(b), have a periodicity 2z0, which is

similar to that for the TMo1 (67r/6) mode in Fig. 3(b).

The harmonic components of E. (r = O, z) are shown in

Fig. 6(a) and (b) for the l’~ol mode and in Fig. 6(c) and (d)

for the Z’M04 mode. The EM fields are normalized by Ao.

The thick, solid curves in the figures represent the total value
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Fig. 7. Resonance frequency shift l!.f of the axial resonant modes for the
T.L104 mode dne to perturbation by a spherical metallic bead. (a) Axial
changes in A f of the TiiI04 (07r/6 ) mode for the bead at r = O; (b) radial

changes in /!.f of the TiWOg(6rr/6) mode for the bead at z = IWzo: (c)
axial changes in A f of the TJ’LI04(67r/6 ) mode for the bead at r = O. Here,
N =1, 2,. . . 6.

of E.. The thin, dashed and chained curves in Fig. 6 express

E. components at r = O denoted by the harmonic number n

in (1), which can be understood if one compares to the values

of An at k,zo = O and kzo = m- in Fig. 5(a) and (b). The

amplitudes of the higher order harmonics not expressed are

very small compared to those shown in Fig. 6. The z-direction

periodicities of E.—as depicted in Fig. 6(a)–(d)<orrespond,

respectively, to those of Figs. 3(a) and (b), and 4(a) and (b).

In Fig. 6(a), the contribution of the n = + 1 harmonics to Ez
results in a small superimposed perturbation in the z-direction.
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Fig. 8. Comparison of numerical and experimental results of frequency shift At by the displaced bead in axial and radial direcbons. The solid curves
indicate the numerical results, and the open circles represent the corresponding experimental results. The axial data were measured by the bead at a radial

position r = 0.543 cm. (a) Axial changes in A~ for the Tfi101(6rr/6) mode; (b) radial changes in Af for the TJlfol(67r/6) mode; (c) axial changes

in Af for the TA103(3rT/6) mode; (d) radial changes in Af for the TiVf03(3m/6) mode.

The effect of this perturbation can easily be observed in the

field lines for the 2!’AfOl (07r/6) mode in Fig. 3(a).

The above results for the TAf04 mode are never trivial and

have not been clarified in the past in the literature [14]–[1 8].

In usual cases, the fundamental A. term is dominant in (1) as

shown in Fig. 6(b) and (d); the shortest axial period of EZ is

220 for Lzo = m, as was shown by Fig. 3(b) and Fig. 4(b).

On the other hand, in the special case where IA+l I is larger

than A., as shown in Fig. 5(b), the axial period can become

as small as Z. for k.zo x O, which is much shorter than the

usual minimum period of 2Z0.

IV. PERTURBATION TECHNIQUE

The perturbation technique is a powerful method to measure

EM field variations inside the resonant cavity [19]. This

technique has been employed in the following analysis of

SWS cavity, and the numerical results have been compared

to experimental ones obtained at the University of Maryland

[20].

When there exists a small metallic sphere bead with radius

To in the cavity, the EM fields in the cavity are perturbed and

the resonance frequency of the cavity changes by an amount of

A~. If the perturbation is small enough, A f can be calculated

approximately with the unperturbed field quantities EZ, E.,

and 17e given by (6)–(8). The resultant expression for A j’

becomes [19], [20]

From (9), the field quantities are closely related to the fre-

quency shift of the SWS cavity due to the bead. In the case of

a spherical bead, the EM field quantities cannot be determined

separately, because an unidirectional perturbation is impossible

to achieve with the spherical bead perturber. The perturbation

in E is always accompanied by a perturbation in H.
The calculated values of the frequency shift A f for the

‘TL!T04 mode, with a bead radius of O.1195 cm, are presented

in Fig. 7. The axial changes in A~ in Fig. 7 are calculated

with the perturber at r- = O. The axial changes in A f for

the Tkfo4 (07r/6) mode are shown in Fig. 7(a). The radial and

axial changes in A f for the 7’lfo4 (67r/6) mode are shown

in Fig. 7(b) and (c). respectively. At r = O, E. = He =

O and the only nonzero field component in (9) is EZ, and,

hence, A f in the axial direction as shown in Fig. 7(a) and

(c), respectively, for TLJoi(On/6) and Tlbfoz(6m/6) modes

are directly proportional to – IE: 12.In other words, the results

presented in Fig. 7(a) and (c) are proportional to the square

of the axial profiles of total EZ in Fig. 6(c) and (d). Hence,

at r = O, we can obtain the quantitative information about
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the axial electric field in the SWS from the A~ data. It

should be noted that the solid curve in Fig. 6(c) is not

symmetric regarding E. (r = O)= O. The curve in Fig. 7(a) is

therefore not simply sinusoidal. For r # O, however, using the

spherical perturber, it is impossible to measure quantitatively

the individual fields involved in Af. The radial variations of

Af are dependent on E,z, E,, and He. In the case of r #

O, at the axial positions where E. = O, both contributions

from E. and He to Af cannot be ignored as is seen from

(9). The positive region in the radial profile of A,f for the

7’kfo4(6n/6) mode, in Fig, 7(b), is ascribed to Ho. The axial

variations of A f for the TLfo4 (07r/6) mode, in Fig. 7(a), are

very rapid compared to those for the Thfol (67r/6) mode, as

shown in Fig. 8(a) by the solid curve. Experimentally, it is

difficult to measure axial changes in A f for the TL’104(OT/6)

mode, in Fig. 7(a), because of the very rapid variation of the

fields in the axial direction. However, the ‘TIM04 (67r/6) mode

in Fig. 7(c) has variations of Af similar to those observed

for the T114_ol(67r/6) mode in Fig. 8(a). These modes have

field variations which are not very rapid in the axial direction

as depicted in Fig. 6(b) and (d). The numerical results of

At have been compared to experimental measurements [20],

and some of these results are shown in Fig. 8. The axial and

radial changes in A f for the TILfol (67r/6) mode are shown in

Fig. 8(a) and (b), respectively. The axial and radial changes in

A~ for the 7’L!fo3 (3fi/6) mode are shown in Fig. 8(c) and (d),

respectively. The open circles represent the experimental data,

and the solid curves are the present numerical results. The

numerical data presented in Fig. 8(a) and 8(c) are for the bead

at a radial position r- = 0.543 cm from the axis. By comparing

the frequency shift to the field profiles, one can determine

the axial resonant modes in the SWS to be Tlllol (67r/6) and

TA!fo3 (3n/6) modes. The agreement between the numerical

and experimental results can be clearly estimated from the

figures. The discrepancy between them lies within the range

of 10–20% .

V. DISCUSSION AND CONCLUSION

We have numerically analyzed the EM quantities of fun-

damental and higher order axial TM modes in a finite length

SWS. It is found that, for the higher order modes, the am-

plitudes of the Floquet harmonics show unusual behavior as

depicted in Fig. 5(b) for the Y’JIJ04 mode. For the Z!’lVfo4(O~/6)

mode (kzo = O), the field quantities are mainly determined by

the Floquet harmonics with n = – 1 and 1, and the fields

have an unusual short period of Z. as shown in Figs. 4(a)

and 6(c). This indicates that the period of field modulations

can decrease to ,zO, which is small compared to that for the

usual modes in cylindrical waveguides where the period is

larger than 220. Such a mode with short field modulations may

become important for higher frequency operation of BWO’s.
The numerical results presented in this paper are being

verified experimentally at the University of Maryland [20].

Generally speaking, it is impossible to reconstrttct the field

distributions including phase change by the frequency shift

measurements only, because the frequency shift is related to

only the absolute values of the EM fields, as is seen from

(9). In some cases, however, the experimental results can be
compared to the numerical calculations as shown in Fig. 8. It is

concluded that the measured resonant modes are TMOI (67r/6)

in Fig, 8(a) and (b), and 2“JW03(3m/6) in Fig. 8(c) and (d).

The agreement between the numerical and experimental data

is quite satisfactory.

To determine the dispersion characteristics of an SWS

cavity, shorted plates are placed at both ends and the resonant

modes are excited by a suitable mode launcher at one of the

end plates. The degree of coupling between the mode launcher

and the SWS determines the type of mode launcher to be

used in the experiment. If the coupling between the mode

launcher and the cavity is strong, complete reflection on the

input antenna side cannot be expected. For a disc-type mode

launcher, the reflection coefficient at the input end will be

small, and consequently our assumption of perfectly shorted

ends of the SWS becomes inapplicable. Hence, we prefer a

short wire antenna at the center of the plate as a mode launcher

to excite the cavity. However, it is difficult to excite the surface

wave modes near kzo = T, as was reported
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